
Inspirel                                                       

YAMI4

MISRA-C:2012 readiness report

For YAMI4Industry, v.1.3.1

 www.inspirel.com | info@inspirel.com                                                                      page 1



Inspirel                                                       
Table of Contents

Document scope....................................................................................................................3

Introduction.............................................................................................................................3

MISRA-C compatibility...........................................................................................................3

Use of char type for string literals..................................................................................3

Use of pointer conversions between unrelated pointer types.......................................4

Serialization of floating point values..............................................................................5

Possible restrictions in the use of callback functions....................................................5

The optional message broker........................................................................................6

Expected system environment...............................................................................................6

Language Runtime Services.........................................................................................6

POSIX Services.............................................................................................................7

Memory requirements....................................................................................................8

YAMI4 protocol restrictions....................................................................................................8

Revision history....................................................................................................................10

 www.inspirel.com | info@inspirel.com                                                                      page 2



Inspirel                                                       

Document scope

The purpose of this document is to describe the level of standard compatibility and system 
requirements of the YAMI4 package dedicated for use in MISRA-C projects.

The document applies to the 1.3.1 version of the YAMI4Industry package.
See the following web site for general information on the project:

http://www.inspirel.com/yami4/industry.html

Introduction

YAMI4, a messaging solution for distributed systems, is a set of lightweight and easy to 
use libraries for various programming languages that support high-level communication 
patterns.

The YAMI4Industry package is a dedicated library written in the C programming language 
and is intended for use in embedded systems that are expected to offer the highest 
standards of quality. In particular, those projects that aim at safety certification, external 
audits or other forms of rigorous validation can decide to use the acclaimed MISRA-C 
coding standard to facilitate code reviews and reasoning about important code properties.

The YAMI4Industry package is a third-party component that implements useful messaging 
abstractions and that can be easily adapted and incorporated in MISRA-oriented projects.

MISRA-C compatibility

The source code of YAMI4Industry package was written with the MISRA-C:2012 standard 
in mind and was verified with the static code analysis tool.

It should be recognized that some of the MISRA-C rules are explicitly flagged as 
“undecidable”, which in practice means that code analysis tools can differ in how precise is
their analysis and how many false positives and false negatives they can report for such 
rules. For this reason the package is not claimed to be a final and 100% finished product, 
but rather should be treated as a candidate for further adaptations - our intent is to assist 
users in resolutions of all remaining compliance issues in the context of actual target 
projects and tool sets.

There are only three potential MISRA-C deviations that are explained and justified below.

 www.inspirel.com | info@inspirel.com                                                                      page 3

http://www.inspirel.com/yami4/industry.html


Inspirel                                                       
Use of char type for string literals

MISRA-C discourages programmers from using standard integral types (Advisory Directive
4.6) and it applies to the char type as well due to the fact that neither its size nor the 
signedness are guaranteed by the language - instead the coding standard suggests the 
use of int8_t or uint8_t.

This rule is followed except for the char type, which is used for string literals, for example:

char message_tag[] = "message";

The reason for this deviation is that such code is not vulnerable to any of the problems that
are typical to the use of integral types as long as the character values are not used for 
arithmetics or for comparisons. The above code is also directly compliant with the 
language standard, which explicitly defines string literals to have char[] type.

Note, however, that whenever the code value of any given character is used, the operation
is performed with the int32_t type.

Use of pointer conversions between unrelated pointer types

MISRA-C forbids pointer conversions between unrelated pointer types (Required Rule 
11.3).

YAMI4 uses POSIX sockets for transport services and as such has to comply with 
requirements of the POSIX standard, which curiously relies on pointer conversions to 
achieve some forms of “polymorphism” between structure types devoted to different types 
from the same family (like, for example, to handle different address types).

For example, the bind function, which is used to assign local address to a socket 
descriptor, can be used with several address types, but has only one signature that allows 
one “base” type for all different address types.

The example usage presented in the POSIX standard:

http://pubs.opengroup.org/onlinepubs/9699919799/functions/bind.html

shows pointer conversion between two pointer types: struct sockaddr_un * and 
struct sockaddr *. These types are formally unrelated, but conversion between them 
is the expected way of using the socket API:

struct sockaddr_un my_addr;

/* ... */

 www.inspirel.com | info@inspirel.com                                                                      page 4



Inspirel                                                       
bind(sfd, (struct sockaddr *) &my_addr,

    sizeof(struct sockaddr_un))

Such type conversions are unavoidable and there are seven places in the whole package 
that rely on this kind of conversions, all of them located in the network_utils.c source 
file and marked with the following comment written in the preceding line in the source 
code:

/* MISRA-C deviation, expected by POSIX. */

Similarly, the same POSIX functions expect some of their arguments to be cleared before 
call (that is, all of the bytes that the given structure is composed of should be set to zero), 
but since the actual structure is not fully defined by the standard, the only portable way to 
fulfill this requirement is to overwrite the complete object with the sequence of zero bytes.

The same POSIX page, linked above, suggests the following approach:

memset(&my_addr, '\0', sizeof(struct sockaddr_un));

It is not possible to perform this kind of operations without violating MISRA-C rules related 
to pointer conversions (note: since by design there is no dependency on the standard 
library, a custom replacement function is used instead of memset), so it is necessary to 
deviate in order to meet POSIX expectations.

Such operations exist in four places in the package, all of them in the network_utils.c
source file and marked with similar comment.

Serialization of floating point values

Another point that is a potential compliance issue is the serialization of floating point 
values. YAMI4 includes floating point values in its data model and to enable data exchange
with nodes written in other programming languages the YAMI4Industry module also 
supports floating point data type. The problem with such values is that the binary 
serialization algorithm can be reasonably implemented in ways that violate MISRA-C rules 
related to pointer conversions or aliasing (Required Rule 11.3 for pointer conversions or 
perhaps Advisory Rule 19.2 for the use of unions as a way to implement object overlays).

The approach taken in the YAMI4Industry package is that the code implementing the 
serialization of floating point values is included in the library, but is deactivated by default 
and requires the definition of YAMI4_WITH_DOUBLE_FLOAT preprocessor macro for 
activation.

In other words, the code does not violate MISRA-C rules by default (and those users who 

 www.inspirel.com | info@inspirel.com                                                                      page 5



Inspirel                                                       
are concerned with deactivated code can remove appropriate conditional sections 
altogether), but supporting sections can be activated by users who are aware of and 
accept the resulting coding standard deviations.

Possible restrictions in the use of callback functions

MISRA-C forbids recursive function calls as they make it more difficult to statically analyze 
worst-case stack usage (Required Rule 17.2).

YAMI4 uses callback functions to report important events like arrival of message, creation 
of communication channel or I/O error and the library is generally designed to accept 
further YAMI4 calls from such callbacks. It should be noted that depending on the actual 
callback invocation some further calls to YAMI4 might result in subsequent callbacks, thus 
leading to recursive calls between user code and the YAMI4 library.

The functions that can lead to callback invocations are those that are related to I/O work 
and are listed below:

• yami_clean

• yami_set_listener

• yami_open_connection

• yami_close_connection

• yami_do_some_work

These functions should not be called from user callbacks.

The optional message broker

The optional message broker is a stand-alone program that can route messages between 
communicating nodes based on their intended subscription patterns. Even though such an
intermediary is not a necessary component in YAMI4 systems, it can be a useful building 
block in some high-level designs.

The message broker was also implemented with MISRA-C in mind, but since it is entirely 
based on the YAMI4 library, it does not introduce any potential deviations on its own and 
has no particular requirements with regard to the target platform.

Note: the message broker contains a very simple logging facility that reports its actions on 
the standard output. This facility, implemented in src/broker/log.c source file, is 
intended for demonstration only and should be replaced with a solution that will be more 
adequate on the actual target platform. In particular, the whole logging facility can be 
replaced with empty implementations on those targets where activity reporting is not 

 www.inspirel.com | info@inspirel.com                                                                      page 6



Inspirel                                                       
necessary or is impractical for technical reasons. This also means that even though the 
supplied demonstration logging mechanism is implemented in terms of stdio.h, it does 
not violate the MISRA-C standard, which explicitly forbids its use (Required Rule 21.6).

Expected system environment

YAMI4Industry package was implemented with POSIX-like systems in mind, but takes into 
account constraints that are typical to embedded platforms. In order to facilitate integration
within the target system, the following sections describe the expected system environment:

Language Runtime Services

The YAMI4Industry package has no dependency on the C language runtime.

The only dependencies on the standard C library are of compile-time nature and exist only 
to satisfy the expectations of MISRA-C coding standard and are related to the use of 
several type definitions. The following header files are used by the package:

C header file Symbols used

stddef.h NULL, size_t

stdint.h int32_t, int64_t, uint8_t, uint16_t, uint32_t

POSIX Services

The YAMI4 messaging system relies on network services of the underlying operating 
system to deliver messages between communicating agents. The high-level libraries use 
TCP, UDP and local sockets (so-called Unix sockets) as transport layers, but the current 
version of YAMI4Industry package supports only TCP and UDP transmission.

Network services are used via the POSIX socket API. The following header files, functions 
and definitions are used:

POSIX header file Symbols used

arpa/inet.h htonl, htons, ntohs

errno.h EINPROGRESS, EINTR, errno

fcntl.h fcntl, F_GETFL, F_SETFL

 www.inspirel.com | info@inspirel.com                                                                      page 7



Inspirel                                                       
netinet/in.h INADDR_ANY, IPPROTO_TCP, sockaddr_in

netinet/tcp.h TCP_NODELAY

sys/select.h FD_ISSET, FD_SET, FD_ZERO, select, timeval

sys/socket.h accept, AF_INET, bind, connect, getsockopt,

listen, MSG_NOSIGNAL, recvfrom, send, sendto,

setsockopt, sockaddr, socket, socklen_t,

SO_ERROR, SO_KEEPALIVE, SO_REUSEADDR,

SOCK_DGRAM, SOCK_STREAM, SOL_SOCKET

unistd.h close, O_NONBLOCK, read

The user should ensure that the above symbols and their semantics are properly 
supported on the target platform.

Note that the YAMI4Industry package does not rely on POSIX threads support and as such
is also not intended for liberal use in multithreading environments. It is safe to use 
separate YAMI4 agents in separate threads, but a single agent should not be accessed by 
more than one thread unless the application ensures proper mutual exclusion by its own 
means. Note that this restriction is a property of the YAMI4Industry package only and is not
present in other YAMI4 libraries.

Memory requirements

According to MISRA-C rules, the code does not rely on dynamic memory. All data 
structures and buffers are sized statically and are part of the main struct yami_agent 
that the user code should instantiate. It is also expected that agent initialization performed 
by means of yami_init_with_user_array or yami_init_with_options_ua will 
be done with a static array of channels allocated outside of the agent object. Following this
restriction is at the discretion of the library user.

All sizes are defined in the limits.h header file and special care should be taken to tune
the values as required for the target system. It should be noted that input and output 
buffers for all channels together will typically contribute significantly to the memory 
requirement of the YAMI4 agent (sizeof(struct yami_agent)) and for this reason 
the total size of the agent should be taken into account at the code design stage. Even 
though the test programs allocate the agent object on the stack for simplicity, it will not be 
a proper solution for target embedded systems, where stack space might be very 
restricted.

Additional consideration should be given to the natural limitation of the UDP packet size - 
there is no point in allocating message buffers bigger than this limit if only UDP 
communication is used.

 www.inspirel.com | info@inspirel.com                                                                      page 8



Inspirel                                                       
In the case of optional message broker, memory requirements depend on the size of 
subscription table, which is defined in the broker_limits.h file and on the size of the 
contained agent itself. It should be noted that the subscription table can have size that is 
independent on the maximum number of channels in the agent and normally it is the agent
that is the most significant contributor to the memory requirements of the whole broker.

YAMI4 protocol restrictions

In order to simplify the internal implementation and to make it easier to comply with 
MISRA-C rules, the following tradeoffs were made:

1. The data model and the serializer offer only limited support for nested parameters 
objects. This restriction is related to the fact that a reasonable full implementation of
nesting would have to rely on recursive calls, which are not allowed in MISRA-C 
compliant code.

2. Note that it is still possible to create and parse message payloads containing nested
values by hand, but the library does not offer any assistance in skipping over 
unknown (not recognized by the application) nested fields.

3. The channels are dimensioned statically and as such do not allow arbitrarily long 
messages. Moreover, since having an upper bound on the message size allows to 
define a message frame size that will be sufficient for every possible message, the 
wire protocol is further simplified to allow only single-frame messages. This 
restriction can introduce wire-compatibility issues with other distributed components
built in terms of other YAMI4 libraries, if they send messages that are bigger than 
their configured frame sizes (as this leads to multiple-framed messages, which are 
not understood by the YAMI4Industry package).

4. The DNS services are not used (they are most likely restricted in the embedded 
environment anyway) and therefore no host name resolution is attempted - all 
addresses have to be provided in their numerical form, for example:

"tcp://127.0.0.1:12345"

The user should make sure that other components in the distributed system are aware of 
these restrictions as well, so that unknown nested objects or multiple-framed messages 
are not sent to those nodes that are implemented in terms of YAMI4 Industry package.

 www.inspirel.com | info@inspirel.com                                                                      page 9



Inspirel                                                       
Revision history

Revision Comment

1 Initial revision, reformatted from previous document with no changes.
Refers to the 1.3.0 version of the YAMI4Industry source package.

2 Reviewed and updated for the 1.3.1 library version.

 www.inspirel.com | info@inspirel.com                                                                      page 10


	YAMI4
	MISRA-C:2012 readiness report
	Table of Contents
	Document scope
	Introduction
	MISRA-C compatibility
	Use of char type for string literals
	Use of pointer conversions between unrelated pointer types
	Serialization of floating point values
	Possible restrictions in the use of callback functions
	The optional message broker

	Expected system environment
	Language Runtime Services
	POSIX Services
	Memory requirements

	YAMI4 protocol restrictions
	Revision history


